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Abstract

Tropical forests currently play a key role in regulating the terrestrial carbon

cycle and abating climate change by storing carbon in wood. However, there

remains considerable uncertainty as to whether tropical forests will continue to

act as carbon sinks in the face of increased pressure from expanding human

activities. Consequently, understanding what drives productivity in tropical for-

ests is critical. We used permanent forest plot data from the Gola Rainforest

National Park (Sierra Leone) – one of the largest tracts of intact tropical moist

forest in West Africa – to explore how (1) stand basal area and tree diversity,

(2) past disturbance associated with past logging, and (3) underlying soil nutri-

ent gradients interact to determine rates of aboveground wood production

(AWP). We started by statistically modeling the diameter growth of individual

trees and used these models to estimate AWP for 142 permanent forest plots.

We then used structural equation modeling to explore the direct and indirect

pathways which shape rates of AWP. Across the plot network, stand basal area

emerged as the strongest determinant of AWP, with densely packed stands

exhibiting the fastest rates of AWP. In addition to stand packing density, both

tree diversity and soil phosphorus content were also positively related to pro-

ductivity. By contrast, historical logging activities negatively impacted AWP

through the removal of large trees, which contributed disproportionately to

productivity. Understanding what determines variation in wood production

across tropical forest landscapes requires accounting for multiple interacting

drivers – with stand structure, tree diversity, and soil nutrients all playing a key

role. Importantly, our results also indicate that logging activities can have a

long-lasting impact on a forest’s ability to sequester and store carbon, empha-

sizing the importance of safeguarding old-growth tropical forests.

Introduction

By sequestering CO2 from the atmosphere and storing it in

wood, tropical forests currently act as a net carbon sink

and play a critical role in abating climate change (Pan et al.

2011). However, whether this carbon sink will persist into

the future remains unclear (Clark et al. 2003; Baker et al.

2004; Feeley et al. 2007; Lewis et al. 2009; Dong et al. 2012;
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Brienen et al. 2015), especially as tropical forests continue

to be threatened by human activities (Laurance 1999; Chaz-

don 2003; Asner et al. 2009). Part of this uncertainty stems

from the fact that while multiple drivers are known to

influence rates of aboveground wood production (AWP)

in tropical forests (e.g., climate, soils, forest structure, func-

tional traits, human disturbance; Malhi et al. 2004; Asner

et al. 2009; Banin et al. 2014; Lasky et al. 2014), few studies

have considered how these drivers act together to shape

AWP. Consequently, we continue to lack a clear under-

standing of the multiple interacting factors which together

control AWP, especially in the context of the African trop-

ics which remain relatively understudied (Lewis et al. 2009;

Cleveland et al. 2011; Banin et al. 2014).

A number of biotic and abiotic factors have been shown

to be important in driving AWP in forests. For instance,

the number and mean size of trees in a given patch of for-

est – which together determine the basal area of the stand

– are strongly tied to aboveground biomass and forest

structure, both of which are key drivers of AWP (Keeling

and Phillips 2007; Slik et al. 2010; Hardiman et al. 2011;

Coomes et al. 2014; Jenkins 2015). Tree diversity has also

been shown to be an important driver of forest AWP, as

complementary ecological strategies among co-occurring

species enable trees to use resources more efficiently and

pack more densely in space (Chisholm et al. 2013; Vil�a

et al. 2013; Jucker et al. 2014, 2015; Lasky et al. 2014;

Pretzsch 2014). In addition to forest structure and compo-

sition, carbon sequestration in forests is also controlled by

the abiotic environment (e.g., Boisvenue and Running

2006). In tropical rain forests, soil nutrients (phosphorus

in particular) have been shown to play a central role in

shaping both large and fine-scale variation in forest AWP

(Banin et al. 2014), in some cases even more so than cli-

mate (Malhi et al. 2004; Cleveland et al. 2011). Lastly, for-

est disturbance associated with human activities such as

logging, mining, and land conversion is cause for concern

across the tropics (Asner et al. 2009). Logging, for exam-

ple, can impact AWP in a number of ways, including

damaging live trees and altering the structure of the

canopy (Okuda et al. 2003; Asner et al. 2004; Blanc et al.

2009; West et al. 2014), through soil impoverishment as a

result of erosion and nutrient leaching (Chazdon 2003),

and by facilitating the establishment of lianas (Schnitzer

and Bongers 2011; Dur�an et al. 2013). One process in par-

ticular – the removal of large diameter trees (Okuda et al.

2003; Bonnell et al. 2011; Osazuwa-Peters et al. 2015) –
can have a sizable and long-lasting impact on AWP, as

large trees contribute disproportionately to productivity

(Slik et al. 2013; Michaletz et al. 2014; Stephenson et al.

2014) and it can take decades for surviving trees to take

their place in the canopy (Martin et al. 2013; Kent et al.

2015; Osazuwa-Peters et al. 2015).

Here, we used repeat census data from permanent for-

est plots distributed across Gola Rainforest National Park

in Sierra Leone – one of the largest tracts of intact tropi-

cal moist forest in West Africa – to explore how the com-

bined effects of stand basal area, tree diversity, soil

phosphorus, and past logging shape current patterns of

AWP. Using structural equation modeling, we tested the

following hypotheses regarding the relative contribution

of each of the above drivers to AWP rates: (1) Forest pro-

ductivity is intrinsically tied to the frequency and mean

size of stems, resulting in a strongly positive relationship

between basal area and AWP; (2) tree diversity generally

promotes AWP; (3) soil phosphorus limits rates of AWP;

and (4) selective logging has a long-lasting impact on

AWP through the removal of large trees which dispropor-

tionately influence productivity.

Materials and Methods

Study site

The Gola Rainforest National Park (hereafter “Gola”) lies

along the border with Liberia between 7°180 and 7°510N
and 10°370 and 11°210W (Fig. 1). It is the largest remain-

ing area of intact lowland moist evergreen forest in Sierra

Leone and is at the western extremity of the Upper Guinea

forest block. Annual rainfall is 2500–3000 mm and is

mostly concentrated in a single wet season between May

and October. The woody vegetation is dominated by Faba-

ceae (both Caesalpinioideae and Mimosoideae subfami-

lies), Euphorbiaceae, and Sterculiaceae (Klop et al. 2008).

Gola was divided into three forest blocks during the 1930s

(see inset in Fig. 1), when commercial logging activities

first began in the park (Lindsell and Klop 2013). Gola

South (ca. 272 km2) is low-lying and swampy in places

(mean elevation 147 m). Gola Central (ca. 417 km2) and

Gola North (ca. 61 km2) are more rugged and at a higher

elevation than the surrounding landscape (mean elevation

303 m). Commercial logging activities reached a peak dur-

ing the 1960s and 1980s, but since the 1990s the park has

been the focus of an ongoing conservation project which

in 2011 culminated with Gola being declared a national

park. Currently the park is managed through a collabora-

tive project between the Government of Sierra Leone, the

Conservation Society of Sierra Leone, and the UK’s Royal

Society for the Protection of Birds (RSPB).

Permanent plot network

Tree inventory data

Between February 2012 and July 2013, we resurveyed

142 permanent forest plots within Gola (Fig. 1). Plots
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were circular with a radius of 19.95 m (0.125 ha) and

were initially established between 2006 and 2007. They

form part of an extensive network of permanent plots

(609 in total) which covers the entire national park fol-

lowing a systematic segmented grid randomly superim-

posed onto the area (Lindsell and Klop 2013). Upon

establishing the plots, each tree ≥30 cm in diameter was

tagged, identified to species (or closest taxonomic unit)

by a Sierra Leone Department of Forestry expert and

its diameter (D1) recorded to the nearest 0.1 cm at a

height of 1.3 m off the ground (or in the case of but-

tressed trees, at a known height above buttress). In

addition, trees ≥10 cm in diameter were surveyed

within a central subplot (radius 6.31 m; 0.0125 ha).

Plots were recensused after an interval of 5–7 years, at

which time stem diameters were remeasured (D2), tree

deaths recorded, and any recruits tagged. Of the 2363

stems initially recorded, 189 died (median plot-level

mortality rate = 1.2% stems/year) and 257 trees

recruited between the two census periods. A total of

167 unique tree species were recorded across the plot

network, with 90% of stems identified to species and

94% at genus level [note that Talbot et al. (2014) sug-

gest 80% of stems identified to genus as sufficient for

productivity calculation].

Past logging activities

Prior to 1990, Gola was subjected to commercial selective

logging, with timber extraction activities concentrated

Figure 1. Location of Sierra Leone and the

Gola Rainforest National Park. The inset map

of Gola shows the location of the 142

permanent forest plots recensused for this

study (green circles).
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primarily in Gola South and in the western side of Gola

Central (Lindsell and Klop 2013). By combining official

logging offtake records (m3/ha of timber) with historical

carbon stocking densities predating the commencement

of logging activities in the park, Lindsell and Klop (2013)

were able to map where logging had taken place within

Gola. Here, we use this information to classify each sur-

veyed plot as either logged (88 plots) or unlogged (54

plots) based on its location within the park. While the

effects of logging on forest structure and function can

vary substantially depending on logging practices (e.g.,

logging intensity, conventional versus reduced-impact

logging; Miller et al. 2011; West et al. 2014; Martin et al.

2015), here we focused on comparing logged versus

unlogged plots as additional information on logging

practices was unavailable for most of Gola.

Soil data

Soil samples from 48 of the 142 recensused plots were

collected with the purpose of quantifying soil phospho-

rus (P), which has been shown to be a key driver of

wood production across tropical forests (Cleveland et al.

2011; Quesada et al. 2012; Banin et al. 2014). In each

plot, three 20-cm-deep soil cores were collected and then

pooled into a single sample. Soil samples were oven

dried at 60°C until constant weight was achieved, bef-

ore being chemically processed in the laboratory (see

Appendix S1 in Supporting Information for further

details). Total soil P (mg/kg) was measured by induc-

tively coupled plasma optical emission spectrometry

(ICP-OES).

Logistical constraints meant we were unable to collect

soil samples from all field plots. Instead, we developed a

regression model to estimate soil P for plots where no

samples were collected. Specifically, soil P was modeled as

a function of distance from streams (estimated in a GIS

environment), terrain slope (measured using a clinome-

ter), elevation (obtained from GPS data), and a random

intercept term which allowed soil P levels to vary among

plots clustered within transects (Tsui et al. 2004; Ferry

et al. 2010). The model effectively captured variation in

soil P (see Fig. S1 for details on model fit), and was used

assign plots to one of three soil P classes (Benjamin

Turner, personal communication): low (<300 mg P/kg;

36 plots), medium (300–500 mg P/kg; 61 plots), and high

soil P (>500 mg P/kg; 45 plots).

Quantifying aboveground wood production

Quantifying aboveground wood production (AWP) from

permanent plot data presents a number of challenges,

particularly in the context of tropical forests (Muller-

Landau et al. 2014; Talbot et al. 2014). Uncertainty in

AWP estimates can arise from multiple sources, including

(1) measurement errors resulting from imprecise field

measurements (R€uger and Condit 2012) or changes in the

position of measurement between censuses (e.g., due to

the presence of buttress roots; Cushman et al. 2014); (2)

missing information regarding the growth of trees that die

and recruit between census periods (Malhi et al. 2004;

Coomes et al. 2014; Talbot et al. 2014); (3) the use of allo-

metric equations for scaling from diameter to above-

ground biomass (Chave et al. 2014); and (4) the size of

the area being sampled (Chave et al. 2004; Chambers et al.

2013). Here, we estimated AWP using the approach devel-

oped by Coomes et al. (2014), in which measured diame-

ter increments are replaced with predicted growth

estimates obtained from a statistical model in which tree

growth is expressed as a function of trees size and compe-

tition for light. Below we describe the steps involved in

estimating AWP and discuss how they aim to address the

issues listed above. However, we acknowledge that the rel-

atively small size of the permanent forest plots sampled in

our study (0.125 ha) is a source of uncertainty which is

likely to influence our AWP estimates, as the presence (or

absence) of large trees within a plot will have a dispropor-

tionate impact on basal area and aboveground biomass

estimates (Chave et al. 2004).

Step 1: data cleaning

Studies that rely on repeat census data to estimate tree

growth rates routinely employ a number of screening

procedures to minimize the presence of measurement

errors which can otherwise bias productivity estimates.

We started by calculating the annual diameter growth

(G, in cm/year) of all trees that were alive at both census

periods as (D2�D1)/Dt, where Dt is the time interval

between censuses. Following the suggestions of Talbot

et al. (2014), trees for which (1) G ≥ 4 cm/year or (2)

whose diameter decreased by more than 0.5 cm between

censuses were then excluded from the next step of the

analysis (“modeling diameter growth”), as these values

are considered extreme outliers arising from gross mea-

surement errors (e.g., changes in the position of mea-

surement between census periods or transcribing errors).

Note that small negative G values were retained in the

dataset to allow for stem shrinkage due to low hydro-

static pressure in the xylem during droughts (Talbot

et al. 2014). At this stage, two plots which suffered par-

ticularly high mortality rates (>50% of stems died

between the first and second census) were also excluded

from all further analyses.
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Step 2: modeling diameter growth

Annual diameter growth was modeled as a nonlinear

function of tree size and competitive neighborhood

(Coomes et al. 2012):

G ¼ q0D
q1 expðq2DÞ

1þ q3 expðq4BLÞ (1)

where D is a tree’s diameter as measured during the first

census (i.e., D1), BL is the summed basal area of trees

with a greater diameter than the target tree within the

plot (described in this paragraph), and q0–q4 are param-

eters to be estimated from the data. The numerator of

equation (1) is a modified power–law which defines the

relationship between tree growth and size. This flexible

function enables diameter growth to increase continu-

ously with size, decelerate as trees become larger, or even

peak and then decline as a function of initial diameter

(Coomes et al. 2012). The denominator instead represents

the effects of asymmetric competition for light on growth

(Coomes and Allen 2007). The competitive effect of larger

neighbors is captured by the competition term BL, which

becomes progressively stronger as the density of trees lar-

ger than the focal tree increases (Coomes and Allen 2007;

Cordonnier and Kunstler 2015). Equation (1) was chosen

after extensive comparison with alternative growth func-

tions (see Table S1) and was parameterized using nonlin-

ear mixed-effects models as implemented in R (3.0.1; R

Core Development Team 2013) using the nlme library. To

account for different growth trajectories among tree func-

tional groups, estimated parameters were allowed to vary

among tree genera (treated as a random effect in the

model; Baraloto et al. 2012).

For each tree recorded during the first and second cen-

sus period (including those that died or recruited between

censuses), annual diameter growth estimates generated

from equation (1) were then used to calculate the tree’s

diameter a year after its initial measurement (t + 1). The

advantage of this approach (compared to one where

growth is imputed directly from field measurements) is

(1) that measurement errors are absorbed by the model

predictions and (2) that it provides a robust way to

impute the growth of trees that died and recruited

between each census based on their size and competitive

status (Coomes et al. 2014; Talbot et al. 2014). However,

it is important to note that this approach will also inevi-

tably absorb part of the true variation in growth rates

among trees. Furthermore, if the statistical model fails to

adequately capture underlying patterns of tree growth

(e.g., the relationship between tree growth and size), then

our approach could potentially introduce systematic

biases into AWP estimates. To rule out this possibility,

we also calculated the diameter growth of all trees directly

from field measurement using the protocol proposed by

Talbot et al. (2014) and repeated all analyses with this

alternative measure of growth (see Appendix S2 for

details).

Step 3: converting from diameter to biomass
growth

Diameter increments were converted to biomass growth by

first calculating the aboveground biomass (AGB, in kg) of

each tree at the time of the first census and at t + 1, and

then subtracting the two to obtain the annual biomass

increment. AGB for both time periods was estimated using

Chave et al. (2014) pan-tropical biomass equation:

AGB ¼ 0:0673� ðD2 �H �WDÞ0:976 (2)

where a tree’s biomass is expressed as a function of its

diameter, height (H, in m), and wood density (WD, in

g/cm2). WD values were obtained from a global database

(Chave et al. 2009; Zanne et al. 2009), with stems being

matched to the most resolved taxonomic unit possible

following the suggestions of Lewis et al. (2009). H was

estimated from D using the following Weibull function

which we parameterized using height and diameter mea-

surements made for 336 trees within Gola (see

Appendix S2):

H ¼ 79:9� ð1� expð�0:011D0:74ÞÞ (3)

The above H–D equation showed considerably better fit

to the data compared to other functional forms (e.g.,

power–law) as well as to published H–D equations for West

African forests (e.g., Feldpausch et al. 2012; see Fig. S3).

Step 4: from individual tree growth to plot-level
AWP

The aboveground wood production (AWP, in Mg

C/ha year) of each plot was estimated by summing the

annual biomass growth of all trees recorded during the

first census. AWP was expressed in units of carbon by

assuming a carbon concentration in woody tissues of

47% (Martin and Thomas 2011). Note that AWP esti-

mates obtained using the statistical modeling approach

described above closely match those calculated directly

from field measurements (Fig. S4; Pearson’s correlation

coefficient = 0.92).

Using structural equation models to identify
key drivers of AWP

We used structural equation modeling (SEM) to test a

conceptual model linking AWP to plot basal area (BA, in
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m2/ha), past logging, tree diversity, and soil P (Grace

et al. 2010; Kline 2010). Central to the model is the rela-

tionship between AWP and BA. Basal area is intrinsically

tied to aboveground biomass and stem packing density

(e.g., Slik et al. 2010), both of which are key determi-

nants of productivity in forests (Keeling and Phillips

2007; Coomes et al. 2014; Michaletz et al. 2014; Jenkins

2015). Specifically, densely packed stands tend to inter-

cept more light and high-biomass forests are generally

dominated by larger, faster growing individual trees

(Stephenson et al. 2014). An appealing property of BA is

that it can be partitioned exactly into size and frequency

components:

BA ¼ p=4� QMD

100

� �2

� nstems (4)

where nstems is the stem density (number of stems/ha)

and QMD is the quadratic mean stem diameter (in cm),

which is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðPD2Þ=nstems

p
(Curtis and Mar-

shall 2000). We therefore chose to model BA as a com-

posite variable of QMD and nstems (Grace et al. 2010),

which allowed us to explicitly attribute changes in BA to

ones in either QMD and/or nstems. Specifically, we

hypothesized that QMD would be lower in previously

logged plots (Okuda et al. 2003; Bonnell et al. 2011; Osa-

zuwa-Peters et al. 2015) and on steep terrain (Clark and

Clark 2000; Ferry et al. 2010; De Toledo et al. 2011),

resulting in lower BA and thereby indirectly impacting

AWP.

In addition to the pathway linking AWP to BA, we also

modeled AWP as a function of tree diversity in order to

test whether diverse plots are more productive than spe-

cies-poor ones (Chisholm et al. 2013; Vil�a et al. 2013;

Jucker et al. 2014). We quantified tree diversity as the

exponential of the Shannon–Wiener index, which Jost

(2006) defines as a measure of the “effective number of

species”:

Effective no. species ¼ exp �
XS
i¼1

BAi

BA
ln

BAi

BA

� � !
(5)

where S is the number of unique species within a plot,

BAi is the basal area of species i, and BA is the total basal

area of the plot. The advantage of this measure of diver-

sity is that it accounts for differences in species’ relative

abundances while also providing a metric whose values

are easily interpretable and directly relatable to species

richness (Jost 2006). To account for the fact that a posi-

tive relationship between tree diversity and AWP might

emerge simply because plots with a greater number of

stems are also more species-rich (Kadmon and Benjamini

2006), we included a pathway linking tree diversity to

stem density in the SEM. Furthermore, we also tested

whether tree diversity was impacted by past logging (e.g.,

Martin et al. 2013) and whether soil P content influences

patters of tree diversity as has been suggested in the liter-

ature (Baltzer et al. 2005; Russo et al. 2008; Coomes et al.

2009; Fortunel et al. 2014). Lastly, based on the assump-

tion that productivity in tropical forests is strongly lim-

ited by soil phosphorus content (Vitousek et al. 2010;

Cleveland et al. 2011; Quesada et al. 2012; Banin et al.

2014), we included a direct pathway between soil P and

AWP in the model.

Model fitting and evaluation

SEMs were implemented using the lavaan R package

(Rosseel 2012). To normalize model residuals, AWP,

nstems, and QMD were log-transformed prior to model fit-

ting (Grace et al. 2010), while Soil P (ordinal categorical

variable) and logging (binary covariate) were both treated

as numeric predictors in the model (Rosseel 2012; Zhang

and Chen 2015). Following the suggestions of Kline

(2010) the fit of the SEM was evaluated based on the fol-

lowing criteria: chi-square test and associated P value

(where P > 0.05 indicates that sample and observed

covariance matrices are statistically indistinguishable), the

root mean square error of approximation (RMSEA; target

value < 0.05), the comparative fit index (CFI; target

value > 0.90), and the standardized root mean square

residual (SRMR; target value < 0.10). Lastly, standardized

path coefficients (and associated P values) were calculated

for individual pathways in the model in order to assess

the relative contribution of each predictor to patterns of

AWP (Grace and Bollen 2005).

Results

Across the network of permanent forest plots AWP ranged

between 0.53 and 4.31 Mg C/ha/year (mean AWP = 1.80

Mg C/ha/year). The SEM provided a good fit to the data

(v2 = 4.7, df = 8, P = 0.79; RMSEA = 0.001; CFI = 0.999;

SRMR = 0.027), and as a whole explained 81% of the

variation in AWP among plots (Fig. 2).

With the exception of terrain slope, all predictors

included in the SEM contributed significantly to shaping

patterns of AWP (Fig. 2). The single strongest determi-

nant of AWP was BA (Fig. 3A), with the relationship

between the two being best described by a power–law
function with an exponent of 0.76 (95% CI = �0.11). In

addition to basal area, both tree diversity and soil P also

contributed to promoting AWP (Fig. 3B–C), with the

direct effect of the two drivers being comparable in mag-

nitude (Fig. 2). In particular, the positive effect of tree

diversity on AWP emerged even after having controlled

for the strong dependence of tree diversity on stem
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Figure 2. Structural equation model relating variation in aboveground wood production (AWP) to basal area (BA), effective number of tree

species (# species), and soil phosphorus (P). BA was modeled as a composite variable of quadratic mean diameter (QMD) and stem density (#

stems), which together determine BA exactly [see eq. (4) in the text]. Tree diversity is expressed as a function of stem density, soil P, and past

logging, which in conjunction with terrain slope is also assumed to influence QMD. Exogenous variables are represented by white boxes, while

endogenous variables are shaded in gray. The width of the arrows reflects the strength of the pathway and is proportional to the standardized

path coefficient (which is reported for each pathway). Black arrows denote positive relationships, while red arrows correspond to negative ones.

Note that a bidirectional arrow is used to report the estimated covariance between stem density and QMD. Asterisks denote significance levels of

the pathways in the model (*P < 0.05; **P < 0.01; ***P < 0.001; nonsignificant pathways are represented by semitransparent arrows). R2 values

are reported for each endogenous variable and model fit statistics are given in the bottom right-hand corner.

Figure 3. Relationship between aboveground wood production (AWP) and (A) plot basal area, (B) effective number of tree species, and (C) soil

P. Fitted regression curves (back-transformed from logarithmic scale) with 95% confidence intervals shaded in gray are shown for panels (A–B).

Panel (C) shows the variation in the mean AWP (�1 SE) among the soil P classes. Note that the scale of the y-axis in panel (C) does not match

the previous two panels.
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density (Fig. 2). Diverse plots generally had greater stem

densities (for a given QMD) compared to species-poor

ones (Fig. 4), resulting in a positive relationship between

tree diversity and both BA and AWP (Figs. 3B and S5).

Lastly, historical logging indirectly impacted AWP by

causing a reduction in QMD (Fig. 5), and thereby BA.

On average, QMD was 5 cm lower in previously logged

plots compared to old-growth forests, which equated to a

loss in AWP of 0.27 Mg C/ha/year (95% CI = �0.19

Mg C/ha/year). In contrast, we found no support for

the idea that historical logging negatively impacted tree

diversity, and only a weak negative association between

soil P and tree diversity (P = 0.09; Fig. 2).

Quantitatively very similar results to those presented

above were found when the SEM was fit to AWP esti-

mates obtained directly from field measurements (as

opposed to ones derived using the statistical modeling

approach described in Materials and Methods; see

Fig. S5). In addition, a complementary analysis of the

data using multiple regression in place of SEMs revealed

that results were robust to the choice of analytical tool

(see Appendix S2).

Discussion

Rates of aboveground wood production varied consider-

ably across Gola Rainforest National Park, with forest

plots exhibiting nearly an order of magnitude difference

in AWP between the least and most productive stands.

Structural equation modeling enabled us to identify a set

of key drivers that, either directly or indirectly, con-

tributed to shaping patterns of AWP across Gola (Fig. 2).

We found that basal area – which reflects the frequency

and mean size of stems in a plot – was central to explain-

ing variation in AWP (Fig. 3A). In addition to the strong

positive relationship between AWP and basal area, tree

species diversity and soil P content also contributed to

promoting AWP (Fig. 3B–C). By contrast, historical log-

ging negatively impacted AWP, an effect which was medi-

ated through the removal of large trees which play a

central role in driving carbon sequestration in forests

(Fig. 5).

Basal area as a key determinant of AWP

Stand basal area emerged as the strongest determinant of

AWP across Gola, with plots characterized by high basal

areas also exhibiting the highest rates of AWP (Figs. 2

and 3A). This strongly positive relationship between AWP

and basal area matches the reports of numerous papers

Figure 4. Relationship between quadratic mean stem diameter and

number of stems per hectare. The size of the points reflects the basal

area of the plot (m2/ha), while the shading is determined by the

effective number of tree species. For visual purposes only, a self-

thinning curve is shown in gray and highlights the inherent trade-off

between the number and mean size of trees in forests. The shape of

the self-thinning curve was determined by fitting a regression (on

log–log scale) to the 99th quantile of the data using the quantreg

package in R. Note that while stem density and basal area have been

scaled up to a per-hectare basis, the effective number of species

refers to plot-level measurements (i.e., 0.125 ha) as diversity does not

scale linearly with area.

Figure 5. Mean quadratic stem diameter of unlogged and selectively

logged forest plots. Notches in the boxplots indicate the 95%

confidence intervals of the medians for the two groups.

Nonoverlapping notches are strong evidence that medians differ

between groups.
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which have shown that productivity is strongly coupled

with aboveground biomass in forest systems (Keeling and

Phillips 2007; Michaletz et al. 2014; Jenkins 2015). Basal

area effectively captures the degree to which trees pack

and utilize space aboveground (Jucker et al. 2015), which

in turn is a key determinant of light interception and

growth at the stand level (Coomes et al. 2014). As dis-

cussed previously, basal area is a product of both the size

and number of stems within a stand. In this respect, our

results seem to suggest that stands with high QMD were

generally more productive than ones dominated by a

large number of smaller stems (Fig. S6), highlighting the

key role played by large trees in determining rates of

AWP in forests (Slik et al. 2013; Stephenson et al. 2014;

Bastin et al. 2015).

Our results suggest that while the relationship between

AWP and basal area does begin to saturate at high pack-

ing densities (i.e., the exponent of the power–law rela-

tionship is <1; see Fig. 3A), this saturation effect is rather

weak. In fact, across Gola we found no evidence of AWP

declining in plots with high basal areas which are gener-

ally dominated by larger – and presumably older – trees

(Ryan et al. 1997; Magnani et al. 2000). One explanation

for this lack of age-related decline in productivity could

well be that large parts of Gola are dominated by rela-

tively young secondary forest which is still recovering

from past disturbance (Lindsell and Klop 2013), as evi-

denced by the fact that many of the surveyed plots have

relatively low basal areas (Lewis et al. 2013; Fig. 3A). In

addition to this, the fact that AWP does not decline at

high packing densities may also reflect the fact that as

basal area accumulates during stand development, forests

optimize the structure and photosynthetic physiology of

their canopies in a manner which maintains high rates of

carbon assimilation (Hardiman et al. 2011, 2013; Coomes

et al. 2012). While this last hypothesis is something we

are unable to test directly with the current dataset, further

work attempting to understand how forests are able to

maintain high rates of AWP in the later stages of stand

development is needed.

Tree species diversity promotes AWP

Across Gola forest we found that diverse plots were gen-

erally more productive than species-poor ones (Fig. 3B).

This finding matches those of a growing number of stud-

ies reporting positive relationships between diversity and

productivity in forests (Paquette and Messier 2011; Vil�a

et al. 2013; Jucker et al. 2014), including in the context of

tropical forests (Chisholm et al. 2013; Lasky et al. 2014).

The fact that diversity generally seems to promote AWP

may be the result of niche complementarity, whereby

combining species with complementary ecological

strategies enables individuals to compete less fiercely and

diverse communities to use resources more efficiently

(Loreau and Hector 2001). Additionally, reduced pest and

pathogen loads in diverse forest patches could also con-

tribute to the positive relationship between tree diversity

and AWP which we observe (Jactel and Brockerhoff

2007). Interestingly, because the relationship between

diversity and productivity has generally been found to be

a saturating one (i.e., at a certain point adding new spe-

cies to a community no longer results in a gain in pro-

ductivity; Cardinale et al. 2006), there was reason to

believe that diversity effects on AWP should be relatively

weak in hyperdiverse tropical forests (Lasky et al. 2014).

However, especially at relatively small spatial scales such

as those of the Gola forest plots (Chisholm et al. 2013),

our results suggest that tree diversity can play an impor-

tant role in driving AWP even in the context of tropical

forests (Poorter et al. 2015).

In addition to directly enhancing the growth of indi-

vidual trees, another pathway through which diversity can

promote AWP is by enabling trees to pack more densely

in space (Pretzsch 2014; Sapijanskas et al. 2014; Jucker

et al. 2015). For instance, Chisholm et al. (2013) found

that across the tropics diverse forest patches generally

have greater aboveground biomass stocks compared to

ones with fewer tree species, which as our analysis shows

has important implications for AWP. In our study, we

found a strong degree of covariation between tree diver-

sity and stem density (Fig. 2). While this positive associa-

tion primarily reflects a typical species accumulation

curve (Kadmon and Benjamini 2006), it is likely that at

least in part covariation between tree diversity and stem

density is determined by the fact that diverse stands are

able to pack more stems in a given area.

Soil nutrient availability modulates AWP

Soil phosphorus content emerged as strong determinant

of AWP across Gola (Fig. 3C), highlighting the important

role played by soil nutrients in driving variation in pro-

ductivity in tropical forests (Cleveland et al. 2011; Que-

sada et al. 2012; Banin et al. 2014). Previous work in the

Amazon and in tropical forests of Southeast Asia also

found productivity to increase markedly in response to

total soil P content (Quesada et al. 2012; Banin et al.

2014), supporting the view that lowland tropical forests

are P-limited (Whitmore 1990; Vitousek et al. 2010).

While nitrogen-fixing microorganisms generally help

maintain high nitrogen concentrations in tropical forest

soils (Hedin et al. 2009), soil P is primarily supplied

through weathering of mineral bedrock and in the low-

land tropics is rapidly leached from the mineral subsoil,

resulting in high soil N:P ratios and P-depleted soils
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(Vitousek et al. 2010). Soil P content can directly influ-

ence forest productivity by affecting the ecophysiology

and growth of individual tree species. For instance, leaf

nutrient concentrations have been shown to be strongly

tied to those in the soil (Tanner et al. 1998; Townsend

et al. 2007), which in turn has major implications for

species’ photosynthetic rates and carbon uptake at stand

level (Mercado et al. 2011; Reich 2012).

In addition to directly limiting tree growth, soil nutri-

ents can also impact forest productivity indirectly as a

result of species filtering along edaphic gradients (Russo

et al. 2005; Reich 2014). Many tropical tree species have

been shown to exhibit clear habitat preferences which

relate directly to soil type (Russo et al. 2005; John et al.

2007; Condit et al. 2013). In particular, nutrient-poor

soils tend to be dominated by species with conservative

strategies, having leaf, root, and architectural traits that

maximize survival (Baltzer et al. 2005; Poorter and Bon-

gers 2006; Sterck et al. 2006, 2011; Russo et al. 2008;

Gourlet-Fleury et al. 2011; Holdaway et al. 2011; Fortunel

et al. 2014). In contrast, it has been hypothesized that

nutrient-rich soils can support a wider range of species,

including ones characterized by resource-acquisitive traits

which rely on fast growth of relatively inexpensive plant

tissues to escape shaded understories (Sterck et al. 2006;

Russo et al. 2008; Coomes et al. 2009; Fortunel et al.

2014; Reich 2014). However, in contrast to expectations

we found no clear influence of soil P content on tree spe-

cies diversity across Gola forest (Fig. 2). Further work on

how soil nutrients contribute to shaping patterns of tree

species diversity and composition in the African tropics is

needed, as most studies to date have taken place in the

Neotropics and Southeast Asia.

Long-term impacts of logging on AWP

Logging activities can impact forest productivity in

numerous ways, such as damaging trees and altering

canopy structure (Okuda et al. 2003; Asner et al. 2004;

Blanc et al. 2009; Martin et al. 2013; West et al. 2014),

promoting the establishment of lianas (Schnitzer and

Bongers 2011; Dur�an et al. 2013) and as a result of soil

erosion (Chazdon 2003). Across Gola forest we found

that historical logging activities had a long-lasting impact

on the mean size of trees within plots (Fig. 5). In turn,

the targeted removal of large trees through selective log-

ging operations negatively affected AWP (Fig. 2), further

highlighting the key role played by large trees in driving

carbon sequestration rates in forests (Slik et al. 2013;

Stephenson et al. 2014).

Our results suggest that the effects of selective logging

on tree size distributions – and, indirectly, on productiv-

ity – can persist for decades after logging activities cease,

which matches a number of other reports in the literature

(Okuda et al. 2003; Bonnell et al. 2011; Lindsell and Klop

2013; Martin et al. 2013; Osazuwa-Peters et al. 2015).

Supporting these findings, Kent et al. (2015) recently used

airborne LiDAR imagery covering a vast swathe of Gola

forest to show that these same logging operations left a

clear and detectable fingerprint on the vertical structure

of the forest canopy. Conversely, our results do not sug-

gest that logging activities have had a long-lasting impact

on tree diversity in Gola (Fig. 2), which contrasts with

reports highlighting how diversity often takes longer to

recover from the logging than aboveground carbon pools

(Martin et al. 2013). One possible explanation for the

limited impact of logging on tree diversity is that logging

operations in Gola were highly selective, focusing only on

limited number of commercially valuable timber species

(Gourlet-Fleury et al. 2013; Lindsell and Klop 2013).

Conclusions

Despite the fact that only a small fraction of the carbon

fixed by forest canopies is allocated to wood, wood pro-

duction plays a critical role in determining the long-term

dynamics of carbon in forests. Consequently, understand-

ing what factors are important in controlling rates of

AWP in forests has major implications for projecting the

terrestrial carbon cycle into an increasingly uncertain

future. This is particularly true in the context of tropical

forests, which store much of the terrestrial carbon and yet

remain relatively understudied. Here, we provide what to

our knowledge is one of the few accounts of wood pro-

duction in tropical forests of West Africa. Our results

highlight how AWP can vary substantially even within the

relatively small confines of Gola Rainforest National Park,

and show how multiple biotic and abiotic drivers –
including the size, number, and diversity of trees as well

as the availability of soil nutrients – come together to

shape rates of AWP. Within this context, disturbance

associated with human activities such as logging can have

a long-lasting impact on a forest’s ability to sequester and

store carbon, further highlighting the importance of safe-

guarding what remains of old-growth tropical forests.
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